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SUMMARY

We develop a Bayesian nonparametric (BNP) approach to evaluate the causal effect of treatment in a
randomized trial where a nonterminal event may be censored by a terminal event, but not vice versa (i.e.,
semi-competing risks). Based on the idea of principal stratification, we define a novel estimand for the
causal effect of treatment on the nonterminal event. We introduce identification assumptions, indexed by
a sensitivity parameter, and show how to draw inference using our BNP approach. We conduct simulation
studies and illustrate our methodology using data from a brain cancer trial. The R code implementing our
model and algorithm is available for download at https://github.com/YanxunXu/BaySemiCompeting.

Keywords: Bayesian nonparametrics; Brain cancer trial; Causal inference; Identification assumptions; Principal
stratification; Sensitivity analysis.

1. INTRODUCTION

Semi-competing risks (Fine and others, 2001) occur in studies where observation of a nonterminal event
(e.g., progression) may be pre-empted by a terminal event (e.g., death), but not vice versa. In randomized
clinical trials to evaluate treatments of life-threatening diseases, patients are often observed for specific
types of disease progression and survival. Often, the primary outcome is patient survival, resulting in
data analyses focusing on the terminal event using standard survival analysis tools (Ibrahim and others,
2005). However, there may also be interest in understanding the causal effect of treatment on nonterminal
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2 Y. XU AND OTHERS

outcomes such as progression, readmission, etc. An example is a randomized trial for the treatment of
malignant brain tumors, where one of the important progression endpoints is based on deterioration of
the cerebellum. An important feature of this progression endpoint is that it is biologically plausible that a
patient could die without cerebellar deterioration. Thus, analyzing the effect of treatment on progression
needs to account for the fact that progression is not well-defined after death.

Varadhan and others (2014) review models that have been proposed for analyzing semi-competing data.
These models can be classified into two broad categories: models for the distribution of the observable
data, e.g., cause-specific hazards, subdistribution functions (Fix and Neyman, 1951; Hougaard, 1999; Xu
and others, 2010; Lee and others, 2015), and models for the distribution of the latent failure times (Robins,
1995a,b; Lin and others, 1996; Wang, 2003; Peng and Fine, 2007; Ding and others, 2009; Peng and Fine,
2012; Chen, 2012; Hsieh and Huang, 2012; Comment and others, 2019). Xu and others (2010) argued
against the use of latent failure time models because the marginal distribution of the nonterminal event
is hypothetical. This is because the joint distribution of the nonterminal event (YP) and terminal event
(YD) is only identified on a wedge of R2. Rather, they argued that “semi-competing risks data are better
modeled using an illness-death compartment model,” where “a subject can either transit directly to the
terminal event or first to the nonterminal event and then to the terminal event.” They proposed a Markov
shared frailty model for the transition rates. Lee and others (2015) proposed a Bayesian semi-parametric
extension, which focused on estimation of regression parameters, characterization of dependence between
event times and prediction of event times for specific covariate profiles. The latent failure approaches of
Fine and others (2001), Wang (2003), and Peng and Fine (2007) have focused on estimating regression
parameters and estimating dependence between nonterminal and terminal event times using copula models.
Robins (1995a,b) focused solely on estimating regression parameters and discusses causal interpretability.
Recently, Comment and others (2019) proposed a casual estimand similar to the one we discuss here,
but uses different models (i.e., parametric frailty models) and different causal assumptions (i.e., latent
ignorability).

In this article, we are interested in estimating the causal effect of treatment on the nonterminal endpoint
from a randomized trial generating semi-competing risk data. Using the potential outcomes framework
(Rubin, 1974), we propose a principal stratification estimand (Frangakis and Rubin, 2002) to quantify the
causal effect. Our estimand is a time-varying version of the survival average causal effect (see, e.g., Zhang
and Rubin, 2003; Tchetgen Tchetgen, 2014), quantified on a relative risk scale. We introduce assumptions
that utilize baseline covariates to identify this estimand from the distribution of the observable data and
propose a Bayesian nonparametric (BNP) approach for modeling this distribution. An important feature
of BNP models is their large support. For example, a Dirichlet process (Ferguson and others, 1973)
location-scale mixture of normals (one of the most widely used BNP models), has full support on the
space of absolutely continuous distributions (Lo, 1984). To handle covariates, our approach is based on
the dependent Dirichlet process (DDP) prior introduced by MacEachern (1999).

The article is outlined as follows: Section 2 introduces the motivating brain tumor study. The formal
definition of the causal estimand is introduced in Section 3. We introduce the BNP model in Section 4. A
simulation study is summarized in Section 5. We analyze the brain tumor data in Section 6, and conclude
with brief discussion in Section 7.

2. MOTIVATING BRAIN TUMOR STUDY

The methodology is motivated by a randomized and placebo-controlled Phase II trial for 222 recurrent
gliomas patients, who were scheduled for tumor resection with recurrent malignant brain tumors (Brem
and others, 1995). Eligible patients had a single focus of tumor in the cerebrum, had a Karnofsky score
greater than 60, had completed radiation therapy, had not taken nitrosoureas within 6 weeks of enrollment,
and had not had systematic chemotherapy within 4 weeks of enrollment. The data include 11 baseline
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Bayesian approach for Semi-competing risks? 3

prognostic measures and a baseline evaluation of cerebellar function. The former includes age, race,
Karnofsky performance score, local vs. whole brain radiation, percent of tumor resection, previous use of
nitrosoureas, and tumor histology (glioblastoma, anapestic astrocytoma, oligodendrolioma, or other) at
implantation. Patients were randomized to receive surgically implanted biodegradable polymer discs with
or without 3.85% of carmustine. The follow-up duration was 1 year. Of the 219 patients with complete
baseline measures, 204 were observed to die and 100 were observed to progress prior to death. Of the
15 patients who did not die, 4 were observed to have cerebellar progression. Our goal is to estimate the
causal effect of treatment on time to cerebellar progression.

3. CAUSAL ESTIMAND AND IDENTIFICATION ASSUMPTIONS

3.1. Potential outcomes and causal estimand

Let Y z
P, Y z

D, and Cz denote progression time, death time, and censoring time, under treatment z. Here,
z = 0, 1 represents control and treatment group, respectively. All event times are log-transformed.
Fundamental to our setting is that Y z

P "> Y z
D (i.e., progression cannot happen after death).

The causal estimand of interest is the function

τ (u) = Pr[Y 1
P < u | Y 0

D ≥ u, Y 1
D ≥ u]

Pr[Y 0
P < u | Y 0

D ≥ u, Y 1
D ≥ u] , (3.1)

where τ (·) is a smooth function of u. Among patients who survive to time u under both treatments, this
estimand contrasts the risk of progression prior to time u for treatment 1 relative to treatment 0, which is
a causal effect in a subgroup defined by potential outcomes. This estimand is an example of a principal
stratum causal effect (Frangakis and Rubin, 2002).

3.2. Observed data

Let Z denote treatment assignment and X denote a vector of the baseline covariates. Let YP = Y Z
P , YD = Y Z

D ,
and C = CZ . Let T1 = YP ∧ YD ∧ C, δ = I (YP < YD ∧ C), T2 = YD ∧ C, and ξ = I (YD < C) denote the
observed event times and event indicators. The observed data for each patient are O = (T1, T2, δ, ξ , Z , X ).
We assume that we observe n i.i.d. copies of O. Throughout, variables subscripted by i will denote data
specific to patient i.

3.3. Identification assumptions

We introduce the following four assumptions that are sufficient for identifying our causal estimand.

Assumption 1: Treatment is randomized, i.e.,

Z ⊥ (Y z
P, Y z

D, Cz, X ); z = 0, 1,

and 0 < Pr[Z = 1] < 1.
This obviously holds by design in randomized trials as considered here.

Assumption 2: Censoring is noninformative in the sense that

Cz ⊥ (Y z
P, Y z

D) X = x; z = 0, 1,

and Pr[Cz > Y z
P, Cz > Y z

D|X = x] > 0 for all x.
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4 Y. XU AND OTHERS

Let λz
x and Gz

x denote the conditional hazard function and conditional distribution function of Y z
D given

X = x, respectively. Under Assumptions 1 and 2, λz
x and Gz

x are identified via the following formulae:

λz
x(t) = lim

dt→0

{
Pr[t ≤ T2 < t + dt, ξ = 1 T2 ≥ t, X = x, Z = z]

dt

}

and

Gz
x(t) = 1 − exp

{
−

∫ t

0
λz

x(s)ds
}

. (3.2)

Furthermore, the conditional subdistribution function of Y z
P given Y z

D and X = x, V z
x , is identified via the

following formula:

V z
x (s|t) = Pr[T1 ≤ s, δ = 1 T2 = t, ξ = 1, X = x, Z = z], (3.3)

where s ≤ t. Together Gz
x(t) and V z

x (s|t) identify the joint subdistribution V z
x (s, t) for (Y z

P, Y z
D) given

X = x.

Assumption 3:The conditional joint distribution function of (Y 0
D, Y 1

D) given X = x, Gx, follows a Gaussian
copula model, i.e.,

Gx(v, w; ρ) = &2,ρ[&−1{G0
x(v)}, &−1{G1

x(w)}], (3.4)

where & is a standard normal c.d.f. and &2,ρ is a bivariate normal c.d.f. with mean 0, marginal variances
1, and correlation ρ. For fixed ρ, Gx is identified since G0

x and G1
x are identified. Similar assumptions have

been used in the causal mediation literature (Daniels and others, 2012).

Assumption 4: Progression time under treatment z is conditionally independent of death time under
treatment 1 − z given death time under treatment z and covariates X = x, i.e.,

Y z
P ⊥ Y 1−z

D Y z
D, X = x; z = 0, 1.

Under Assumptions 1–4, τ (·) is identified from the distribution of the observed data as follows:

τ (u) =
∫

x

∫
s<u

∫
v≥u

∫
t≥u dV 1

x (s|t)dGx(v, t)dK(x)
∫

x

∫
s<u

∫
v≥u

∫
t≥u dV 0

x (s|t)dGx(v, t)dK(x)
, (3.5)

where K(x) is the empirical distribution of X .

4. BAYESIAN REGRESSION MODEL

In this section, we propose a BNP survival regression model on the unknown conditional (on X = x)
distribution of (Y z

P, Y z
D). However, any alternative Bayesian survival regression models could be imple-

mented (Hanson and Johnson, 2002; Gelfand and Kottas, 2003; Zhou and Hanson, 2018; Sparapani and
others, 2016; Xu and others, 2019); however, the first three are restrictive in how covariates are entered
and the fourth one is semi-parametric.
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4.1. Dependent Dirichlet process—Gaussian process prior

We start with a review of the Dirichlet process (DP) as a prior for an unknown distribution and step by
step extend it to the dependent Dirichlet process—Gaussian process prior.

The DP prior has been widely used as a prior model for a random unknown probability distribution.
We write H ∼ DP(α, H0) if a random distribution H of a J -dimensional random vector V follows a DP
prior, where α is known as the total mass parameter and H0 is known as the base measure. Sethuraman
(1994) provides a constructive definition of a DP, where dH (v) = ∑∞

h=1 whδθh(v), wh = νh
∏

l<h(1 − νl),

θ h = {θh1, . . . , θhJ }
i.i.d.∼ H0 and νh

i.i.d.∼ Be(1, α). In many applications, the discrete nature of H is not
appropriate. A DP mixture model extends the DP model by replacing each point mass δθh(·) with a
continuous kernel. For example, a DP mixture of normals takes the form: dH (v) = ∑

h whφ (v; θ h, ") dv,
where φ(·; µ, S) is the density function of a multivariate normal random vector with mean vector µ and
variance–covariance matrix S.

To introduce a prior on the conditional (on covariates X = x) distribution (Hx) of V , the DP
mixture model has been extended to a dependent DP (DDP) by replacing θ h in each term with
θ h(x) = {θh1(x), . . . , θhJ (x)}, which is a multivariate stochastic process indexed by x. A DDP mixture of
normals takes the form:

dHx(v) =
∑

h

whφ (v; θ h(x), ") dv. (4.6)

To complete the prior specification, we need to posit a stochastic process prior for {θ h(x) : x}.
A common specification are independent Gaussian process (GP) priors (MacEachern, 1999; Xu and
others, 2016) on {θhj(x) : x}. A GP prior is specified such that for all L ≥ 1 and (x1, . . . , xL),
the distribution of (θhj(x1), . . . , θhj(xL)) follows a multivariate normal distribution with mean vector
(µhj(x1), . . . , µhj(xL)) and (L × L) covariance matrix where the (l, l′) entry is Rj(xl , xl′ ). We write
{θhj(x) : x} ∼ GP(µhj(·), Rj(·, ·)). For an extensive review of the GP priors, see Rasmussen and Williams
(2006) and MacKay (1999). We model the mean function µhj(·) as a linear regression on covariates
µhj(xl; βhj) = xlβhj, with covariance process specified as

Rj(xl , xl′) = exp

{

−
D∑

d=1

(xld − xl′d)
2

}

+ δll′ε
2, (4.7)

where D is the dimension of the covariate vector, δll′ = I (l = l′) and ε is a small constant (e.g., ε = 0.1)
used to ensure that the covariance function is positive definite. To ensure a reasonable covariance structure,
continuous covariates should be standardized to have mean 0 and variance 1. More flexible covariance
functions can be considered if desired. Additional priors are introduced on the β j’s and ", the details of
which are discussed in Appendix A.1. We write {Hx} ∼ DDP-GP(α, ,, GP(µj(·), Rj(·, ·)), j = 1, . . . , J ).

4.2. Application to semi-competing risks data

Separately for each treatment group z, we posit independent DDP-GP’s on the unknown conditional (on
X = x) probability measure (H z

x ) of (Y z
P, Y z

D). Since V z
x (s|t) = H z

x (Y
z
P ≤ s, Y z

P ≤ Y z
D|Y z

D = t) (s ≤ t) and
Gz

x(t) = H z
x (Y

z
D ≤ t), the prior on H z

x induces priors on V z
x (s|t) and Gz

x(t) (identified under Assumptions
1 and 2) and together with the Gaussian copula for Gx implies a prior on the estimand τ (·). The prior on
H z

x also induces priors on non-identified quantities which have no impact on our analysis. More specifics
about our prior are presented in Appendix A.1.
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6 Y. XU AND OTHERS

Before transitioning to the posterior sampling algorithm, note that the relevant portion of the observed
data likelihood for individual i, with data Oi = (T1i, T2i, δi, ξi, Zi, X i) is

L(Oi) =
{

dV Zi
X i

(T1i|T2i)dGZi
X i

(T2i)
}δiξi

{∫

t>T2i

dV Zi
X i

(T1i|t)dGZi
X i

(t)
}δi(1−ξi)

×

{(
1 − V Zi

X i
(T2i|T2i)

)
dGZi

X i
(T2i)

}(1−δi)ξi
{∫

t>T2i

(
1 − V Zi

X i
(T2i|t)

)
dGZi

X i
(t)

}(1−δi)(1−ξi)

=
{

dH Zi
X i

(T1i, T2i)
}δiξi

{∫

t>T2i

dH Zi
X i

(T1i, t)
}δi(1−ξi) {∫

s>T1i

dH Zi
X i

(s, T2i)

}(1−δi)ξi

×
{∫

t>T2i

∫

s>T2i

dH Zi
X i

(s, t)
}(1−δi)(1−ξi)

.

We include the second equality because it allows us to see that, using data augmentation to replace the
integrals, the joint full data likelihood is

∏n
i=1 dH Zi

X i
(YPi, YDi). This will allow us to use existing posterior

simulation techniques for DDP-GP models.

4.3. Posterior simulation

The details of the Markov chain Monte Carlo (MCMC) algorithm are presented in Appendix A.2. Here,
we focus on individuals assigned to treatment z and suppress the dependence of the notation on z. As
noted above, the MCMC implementation is based on the full data likelihood. While dHX i is an infinite
mixture of normals, we approximate it by a finite mixture with K < ∞ components. This finite mixture
model for (YPi, YDi) can be replaced by a hierarchical model where (1) γi is a latent variable that selects
mixture component h (h = 1, . . . , K) with probability wh (properly normalized to handle the finite number
of mixture components) and (2) given γi, the pair (YPi, YDi) follows a multivariate normal distribution with
mean θ γi (X i) and variance ".

Posterior simulation is based on this hierarchical model characterization. Importantly, all of the full
conditionals in the MCMC algorithm have a closed form representation. Details of the MCMC posterior
simulation can be found in Appendix A.2.

5. SIMULATION STUDIES

5.1. Simulation setup

We considered three simulation scenarios to evaluate the performance of our proposed approach with 500
repeated simulations for each scenario. We generated Z ∼ Bern(0.5). Independently of Z , we generated
two independent covariates X1 and X2, where X1 followed a truncated normal distribution with mean 4.5,
variance 1, and truncation interval (2, 7.5), and X2 ∼ Bern(0.4). For the first two simulation scenarios,
we simulated progression time and death time on the log scale as follows:

Y z
P = 1.5z + 0.6X1 + 2X2 + ε,

Y z
D = 4z + 0.3X1 + X2 + ν.

In Scenario 1, we assumed (ε, ν) followed a bivariate normal distribution with mean (0, 1.5)′, mar-
ginal variances S11 = S22 = 1, and correlation S12 = 0.75. In Scenario 2, we assumed (ε, ν) to be
a scaled multivariate t distribution with degree of freedom ν = 3, mean (0, 1.5)′, marginal variance
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Table 1. (a) For each scenario, mean and standard deviation of RMSE across 500 simulated data sets
under the proposed BNP method, the naive Bayesian method (Naive), and the LinearDDP method. Bold
values indicate that the proposed BNP yields the smallest mean RMSE when ρ = 0.5. (b) Means and
standard deviations of RMSE for estimating τ̂ (u) across 500 simulations in three scenarios under the
proposed BNP approach, the naive Bayesian method (Naive), and the LinearDDP method, respectively

Scenario
Z = 0 Z = 1

BNP Naive LinearDDP BNP Naive LinearDDP
1 0.012 (0.007) 0.013 (0.007) 0.014 (0.007) 0.012 (0.006) 0.013 (0.007) 0.015 (0.008)
2 0.042 (0.022) 0.088 (0.032) 0.063 (0.020) 0.019 (0.007) 0.073 (0.035) 0.058 (0.023)
3 0.012 (0.006) 0.013 (0.007) 0.014 (0.007) 0.012 (0.007) 0.014 (0.007) 0.016 (0.008)

(a)

Scenario
ρ = 0.2 ρ = 0.5

BNP Naive LinearDDP BNP Naive LinearDDP
1 0.286 (0.087) 0.328 (0.126) 0.332 (0.087) 0.059 (0.035) 0.073 (0.051) 0.091 (0.016)
2 0.277 (0.128) 0.493 (0.250) 0.449 (0.189) 0.090 (0.062) 0.199 (0.169) 0.179 (0.123)
3 0.106 (0.032) 0.105 (0.038) 0.115 (0.043) 0.033 (0.016) 0.035 (0.021) 0.043 (0.027)

Scenario
ρ = 0.8

BNP Naive LinearDDP
1 0.185 (0.037) 0.207 (0.047) 0.181 (0.042)
2 0.261 (0.070) 0.243 (0.111) 0.203 (0.084)
3 0.086 (0.028) 0.097 (0.034) 0.086 (0.035)

(b)

S11 = S22 = 1, and correlation S12 = 0.75. Scenario 3 explored performance under a nonlinear covariate
effect specification on progression and death times. We generated Y z

P = 1.5z + 0.6Xi + 2X2 + ε and
Y z

D = 4z + 0.3X1 + X2 + 0.5
√

X1 + ν, with (ε, ν) following the same distribution as in Scenario 1.
In all scenarios, the censoring time Cz on the log scale was generated independently according to a

Unif(8, 10) distribution. In Scenario 1, 56.6% of the patients’ deaths and progressions were both observed
(δ = ξ = 1), 2% of the patients’ deaths and progressions were both censored (δ = ξ = 0), 36.4% of the
patients’ deaths were observed and progressions were censored (δ = 0, ξ = 1), 5% of the patients’ deaths
were censored and progressions were observed (δ = 1, ξ = 0). In Scenario 2, 55.8% of the patients’deaths
and progressions were both observed, 4.8% of the patients’ deaths and progressions were both censored,
33.6% of the patients’ deaths were observed and progressions were censored, 5.8% of the patients’ deaths
were censored and progressions were observed. In Scenario 3, these percentages were 69.4%, 3.4%,
10.6%, and 16.6%, respectively. For the joint distribution of Y 0

D and Y 1
D in (3.4), we set ρ = ρo = 0.5 in

the Gaussian copula as the truth. We generated (Zi, X1i, X2i, YPi, YDi, Ci) for n = 500 independent patients
and then coarsened to (Zi, X1i, X2i, Ti1, Ti2, δi, ξi).

To explore sensitivity of τ (u) with respect to ρ, we conducted inference for τ (u) under several values
of ρ = 0.2, 0.5, 0.8. For all three scenarios, we specified hyperparameters as described in Appendix A.1.

For comparative purposes, we implemented two alternative models. The first one is a naive Bayesian
(Naive) model by assuming that the conditional probability measure (H z

x ) of (Y z
P, Y z

D) follows a multi-
variate normal distribution with mean (x′βz

P, x′βz
D) and variance–covariance matrix Sz, with conjugate

multivariate normal priors on βz
P and βz

D and an inverse Wishart prior on Sz (i.e., βz
P ∼ MN(0, τ 2

PI ),
βz

P ∼ MN(0, τ 2
DI ), and Sz ∼ Inverse Wishart(ν, .), z = 0, 1). The second one is the linear dependent

DDP (LinearDDP) model proposed in De Iorio and others (2009), which simplifies the proposed BNP
model by assuming that θ h(x) in (4.6) is a linear regression on x, instead of a Gaussian process prior on
θ h(x) used in the proposed BNP model.
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8 Y. XU AND OTHERS

Fig. 1. For each simulation scenario and by treatment group (first and second rows refer to treatments 0 and 1,
respectively), the true survival functions (solid line), the posterior mean survival functions averaged over simulated
data sets (dashed line), and 95% point-wise credible intervals (computed using quantiles) averaged over simulated
data sets (dotted lines). Survival times are on the original scale (days).

For each analysis, we ran 5000 MCMC iterations with an initial burn-in of 2000 iterations and a
thinning factor of 10. The convergence diagnostics using the R package coda show no evidence of
practical convergence problems.

5.2. Simulation results

We first report on the performance in terms of recovering the true treatment-specific marginal survival
functions for time to death. For the BNP approach, Figure 1 shows, for each of the three simulation
scenarios and by treatment group (first and second rows refer to treatments 0 and 1, respectively), the true
survival functions (solid line), the posterior mean survival functions averaged over simulated data sets
(dashed line), and 95% point-wise credible intervals (computed using quantiles) averaged over simulated
data sets (dotted lines) on the original time scale (days). As another metric of performance, we computed,
for each simulated data set, the root mean squared error (RMSE) taken as the square root of the average of
the squared errors at 34 equally spaced grid points in log-scaled time interval (0, 10). For each scenario,
Table 1(a) summarizes the mean and standard deviation of RMSE across the 500 simulated data sets.
Both Figure 1 and Table 1(a) show that our proposed BNP procedure performs well, for each of the three
scenarios, in terms of recovering the true survival function.

Table 1(a) also shows the mean and standard deviation of RMSE for the Naive and the LinearDDP
models. In Scenario 1, the two models match the true simulation model, thereby yielding comparable
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results as the proposed BNP model. In contrast, the Naive and the LinearDDP models perform worse than
the BNP model in Scenario 2 when the fitted model does not match the simulation truth. In Scenario 3,
the BNP model performs slightly better than the Naive and the LinearDDP models. Overall, the proposed
BNP model is more robust compared to the Naive and the LinearDDP models.

Evaluation of τ (·) requires evaluation of Gz
x as the second marginal under H z

x . Expression (3.5) allows
us now to estimate τ (u). Both the numerator and denominator can be evaluated as functionals of the
currently imputed random probability measure H z

x (Y
z
P, Y z

D) of time to log progression Y z
P and time to log

death Y z
D under treatment z, marginalizing with respect to the empirical distribution of covariates x’s.

Each iteration of the posterior MCMC simulation evaluates a point-wise estimate and we estimate the
posterior mean of τ (u) as τ̂ (u) = Mean {τ (u) | data} across iterations. We also report the mean RMSE in
estimating the τ̂ (u) by averaging over 500 repeated simulations under the proposed BNP, the Naive, and
the LinearDDP models. Table 1(b) summarizes the results.

Figure 2 shows τ̂ (u) versus u in the three scenarios, respectively, using ρ = 0.2, 0.5 and 0.8. As shown
in Figure 2, in all three scenarios, when ρ = ρo = 0.5, the estimates under the proposed BNP model
reliably recover the simulated true τ (u) and avoid the excessive bias seen with other ρ values. This agrees
with the results reported in Table 1(b) that ρ = 0.5 always yields the smallest mean RMSE in all three
scenarios. Furthermore, when ρ = 0.5, the proposed BNP model has smaller mean RMSE compared to the
Naive and the LinearDDP models. When ρ = 0.2 or 0.8, the BNP model performs better or comparable to
the Naive model in terms of providing smaller mean RMSE and variability of RMSE across simulations.

6. BRAIN TUMOR DATA ANALYSIS

An initial analysis of the brain tumor death outcome using Kaplan–Meier is given in Figure 3, indicating
that the treatment group has higher estimated survival probabilities. The estimated difference at 365 days
is 2.6% (95% CI −8.1% to 13.3%). Figure 3 plots the estimated posterior survival curves for treatment
and control groups marginalized over the distribution of covariate with 95% credible intervals; panels
(a), (b), and (c) display the results for the BNP, Naive, and LinearDDP approaches, respectively. Using
the BNP approach, the estimated posterior difference in survival at 365 days is 6.2% (95% CI −1.2%
to 13.3%). For the Naive approach, the estimated posterior difference in survival at 365 days is 8.4%
(95% CI 0.2% to 17.9%). The LinearDDP approach estimated the posterior difference in survival at
365 days to be 9.9% (95% CI 0.9% to 20.8%). The BNP approach produces comparable or higher
treatment-specific estimates of survival and greater treatment differences than Kaplan–Meier. In contrast,
the Naive and LinearDDP approaches produce comparable or lower (higher) estimate of survival for
the control (treatment) group than Kaplan–Meier. Comparatively speaking, the Naive and LinearDDP
approaches produce lower treatment-specific posterior estimates of survival than the BNP approach.
When we compare the fit to the observed survival data of the three approaches using the log-pseudo
marginal likelihood (LPML; (Geisser and Eddy, 1979), a leave-one-out cross-validation statistic, we see
the BNP performs better. Specifically, the LPML for the treatment arm is −144, −161, −147 for the
BNP, Naive, and LinearDDP approaches, respectively. The corresponding numbers for the control arm
are −137, −174, and −139.

For the BNP (panel (a)), Naive (panel (b)), and LinearDDP (panel (c)) approaches, Figure 4 plots the
posterior estimates (along with point-wise 95% credible intervals) of the causal estimand τ (u) versus u
for three choices of ρ, 0.2, 0.5, and 0.8. Except near u = 0, there are no appreciable differences between
the two approaches. In addition, the results are insensitive to choice of ρ. Overall, this analysis shows
that there is a lower estimated risk of progression for treatment versus of control at all time points, except
near zero. However, there is appreciable uncertainty, characterized by wide posterior credible intervals,
that precludes more definitive conclusions about the difference between treatment groups with regards to
progression. When we compare the fit to the observed survival and progression data of the BNP and Naive
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10 Y. XU AND OTHERS

Fig. 2. The posterior estimates (dashed lines) of τ (u) versus u on the original scale (days) for the three scenarios
using ρ = 0.2, 0.5, 0.8, respectively. The solid lines represent the simulation truth using ρo = 0.5. The dotted lines
represent 95% point-wise credible intervals (computed using quantiles) averaged over simulated datasets.

approaches using LPML, we see that the approaches perform comparably. Specifically, the LPML for the
treatment arm is −227, −232, and −235 for the BNP, Naive, and LinearDDP approaches, respectively.
The corresponding numbers for the control arm are −215, −214, and −219.
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(a) (b) (c)

Fig. 3. The dashed lines in (a) represent the estimated posterior mean survival curves for the proposed BNP method.
The dotdash lines in (b) and (c) represent the estimated posterior mean survival curves for the Naive method and
LinearDDP method, respectively. In all figures, the solid lines represent the Kaplan–Meier curves of the observed
survival data in control and treatment groups, and the dotted lines represent 95% point-wise credible intervals of the
posterior estimated survival curves. Survival times are on the original scale (days).

(a) (b) (c)

Fig. 4. Posterior estimated τ (u) versus u on the original scale (days) in brain tumor data analysis for different ρ’s under
the proposed BNP method, the Naive method, and the LinearDDP method, respectively. The solid lines represent the
posterior estimated τ (u), and the dashed lines represent 95% point-wise credible intervals. (a) BNP, (b) Naive, and
(c) LinearDDP.

7. DISCUSSION

In this article, we proposed a causal estimand for characterizing the effect of treatment on progression
in a randomized trials with a semi-competing risks data structure. We introduced a set of identification
assumptions, indexed by a non-identifiable sensitivity parameter that quantifies the correlation between
survival under treatment and survival under control. Selecting a range of the sensitivity parameter ρ in a
specific trial will depend on clinical considerations. For example, in trial of a biomarker targeted therapy,
one might expect weaker correlation, since survival under control might be primarily determined by co-
morbidities and the survival under treatment might be more determined by the presence of the targeted
molecular aberration. For example, a recent FDA-approved drug LOXO-101 (Hyman and others, 2017)
targeting NTRK fusion has an overall response rate of 78% in the treatment group, while only 10% in the
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12 Y. XU AND OTHERS

control group. In contrast, for some chemotherapies, the same factors that impact survival under control
may equally impact survival under treatment, e.g., co-morbidities, social support (Kaufman and others,
2015). Then we would suggest a medium or high ρ, say ρ = 0.8. Fortunately, the sensitivity parameter is
bounded between −1 and 1 and, in most settings, should be positive; a range should be selected in close
collaboration with subject matter experts.

We proposed a flexible BNP approach for modeling the distribution of the observed data. Since the
causal estimand is a functional of the distribution of the observed data and ρ, we draw inference about it
using posterior summarization. Our procedure can easily be extended to accommodate a prior distribution
on ρ, which will allow for integrated inference. Our procedure also allows for posterior inferences about
other identified causal contrasts such as the distribution of survival under treatment versus under control.
The procedure can also be used for predictive inference for patients with specific covariate profiles.
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APPENDIX A

A.1 Determining prior hyperparameters

As priors for βz
hj in the GP mean function, we assume βz

hj ∼ N (βz
0j, $

z
0j). We assume $z

0j ∼
Inverse-Wishart(λz

0, %z), where E[$z
0j] = %z

λz
0−3 . The precision parameter α in the DDP is assumed to

be distributed Ga(λ1, λ2).
In applications of Bayesian inference with small to moderate sample sizes, a critical step is to fix

values for all hyperparameters ω = {βz
0j, "

z
0j, λ

z
0, &z, z = 0, 1, j = 0, 1, λ1, λ2}. Inappropriate information

could be introduced by improper numerical values, leading to inaccurate posterior inference. We use an
empirical Bayes method to obtain βz

0 = (βz
01, βz

02) by fitting a bivariate normal distribution for responses
of patients under treatment z, Y | Z = z ∼ N (xβz

0, "β0). For "z
0j, we assume a diagonal matrix with the

diagonal values being 10. After an empirical estimate of ,̂z is computed, we tune λz
0 and &z so that the

prior mean of "z matches the empirical estimate, λz
0 = 4 and &z = "̂z. Finally, we assume λ1 = λ2 = 1.

A.2 MCMC computational details

Unless required for clarity, we suppress dependence of the notation on treatment z. Here, j is used to
denote endpoint (j = 1 for progression and j = 2 for death). We define

" =
[

σ 2
1 σ12

σ21 σ 2
2

]
.

Let Ah = {i : γi = h} and nh = |Ah|, Y i = (YPi, YDi), θ&
hj = (θhj(X 1), . . . , θhj(X n)) (h = 1, . . . , K), X is

an n × D matrix where the ith row contains the D-dimensional covariate vector X i for the ith patient, Rj

is an n × n matrix where the (i, i′) entry is Rj(X i, X i′), U h is an nh × n matrix where the kth row refers to
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the kth patient in Ah, the ith column refers to patient i and (k , i) element is the indicator that the patient in
kth row is the same as the patient in the ith column, I n is an n × n identity matrix, Ỹ hj = {Ỹji : γi = h},
where Ỹ1i = YPi − σ12

σ2
2

(
YDi − θγi2(X i)

)
and Ỹ2i = YDi − σ21

σ2
1

(
YPi − θγi1(X i)

)
, σ̃ 2

1 = σ 2
1 − σ12σ21

σ2
2

, and

σ̃ 2
2 = σ 2

2 − σ12σ21
σ2

1
.

For z = 0, 1, we iterate through the following six updating steps:

(1) Update wh

vh ∼ Beta(1 + nh, α +
∑

j>h

nj),

where nh = ∑nk
i=1 I (γi = h) is the number of observations such that γi = h. Then, w1 = v1 and

wh = vh
∏

j<h(1 − vj).
(2) Update α

Assuming that α ∼ Ga(λ1, λ2),

α ∼ Ga(λ1 + H − 1, λ2 −
H−1∑

h=1

log(1 − vh)),

where vh is generated from Step 1.
(3) Update "

" | · ∼ Inverse Wishart



λ0 + n, % +
K∑

h=1

∑

i:γi=h

(Y i − θ h(X i))(Y i − θ h(X i))
′





(4) Update θ&
hj, j = 1, 2

p(θ&
hj | ·) ∝ p(θ&

hj)
∏

i:γi=h

p(Y i | θ h(X i))

∝ exp
{
−1

2
(θ&

hj − Xβhj)
′R−1

j (θ&
hj − Xβhj)

}

× exp




−1
2

∑

i:γi=h

(Y i − θ h(X i))
′"−1(Y i − θ h(X i))






∼ N




{

R−1
j + U ′

hU h

σ̃ 2
j

I n

}−1 {

U ′
h

Ỹ hj

σ̃ 2
j

+ R−1
j Xβhj

}

,

{

R−1
j + U ′

hU h

σ̃ 2
j

I n

}−1




(5) Update βhj

p(βhj | ·) ∝ p(βhj) exp
{
−1

2
(θ&

hj − Xβhj)
′R−1

j (θ&
hj − Xβhj)

}

∼ N($hj
(
X ′R−1

j θ&
hj + $−1

0j β0j

)
, $hj),
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where $hj = (X ′R−1
j X + $−1

0j )−1.
(6) Update (γi, Y i), where Y i = (YPi, YDi).

We write p(γi, Y i | ·) as p(Y i | γi, ·)p(γi | ·) where · includes Oi.
• If δi = ξi = 1

Pr(γi = h | ·) ∝ whφ(T1,i, T2,i; θ h(X i), ");

p(Y i | γi, ·) is point mass at Y i = (T1i, T2i).

• If δi = ξi = 0 (i.e., YPi > T2i, YDi > T2i),

Pr(γi = h | ·) ∝
∫

t>T2i

∫

s>T2i

whφ(s, t; θ h(X i), ")dsdt.

p(Y i | γi, ·) = φ(Y i; θ γi (X i), ")∫
t>T2i

∫
s>T2i

φ(s, t; θ γi (X i), ")dsdt
,

where YPi > T2i, YDi > T2i.

• If δi = 1 and ξi = 0

Pr(γi = h | ·) ∝
∫

t>T2i

whφ(T1i, t; θ h(X i), ")dt;

p(Y i | γi, ·) = φ(Y i; θ γi (X i), ")∫
t>T2i

φ(T1i, t; θ γi (X i), ")dt
,

where YPi = T1i, YDi > T2i.

• If δi = 0 and ξi = 1

Pr(γi = h | ·) ∝
∫

s>T1i

whφ(s, T2i; θ h(X i), ")ds;

p(Y i | γi, ·) = φ(Y i; θ γi (X i), ")∫
s>T1i

φ(s, T2i; θ γi (X i), ")ds
,

where YPi > T1i, YDi = T2i.
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